
TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

Synchronization problems with
message-passing

• Barriers

• Resource allocator

• Producer-consumer

• Readers-writers

• Dining philosophers

Today’s menu

2

A gallery of synchronization problems

In today’s class, we go through several classical synchronization problems and
solve them using processes and message passing

On the course website you can download fully working
implementations of some of the problems

Solving these problems with message passing has a different style than using
semaphores or monitors:

• Mutual exclusion is not an issue, since there are no shared variables

• Coordination is the main problem, which is achieved by exchanging
messages asynchronously

The solutions are in the style of servers, which run event-loop functions that
handle requests from clients thus coordinating them

A gallery of synchronization problems

3

Barriers

4

-module(barrier).

% initialize barrier for ‘Expected’ processes

init(Expected) -> todo.

% block at ‘Barrier’ until all processes have reached it

wait(Barrier) -> todo.

Reusable barrier: implement module barrier such that:

• A process blocks on wait until all processes have reached the Barrier

• After Expected threads have executed wait, the barrier is closed again

Reusable barriers – recap

5

Processes continuously approach the barrier, which must guarantee that

they synchronize each access.

Processes at a reusable barrier

6

processk

process(Barrier) ->
% code before barrier

barrier:wait(Barrier) % synchronize at barrier

% code after barrier

process(Barrier).

The barrier process keeps track of the processes that have arrived at the barrier:

• when a new process arrives, it sends an arrived message to the barrier; the barrier
updates its list of arrived processes

• when the list of arrived processes is complete, the barrier sends a continue
message to all processes

• after notifying all processes, the barrier goes back to the initial state, ready for a
new iteration

We implement the barrier’s event loop as a server function:

barrier(Arrived, Expected, PidRefs)

where Arrived processes have arrived so far, out of a total of Expected; PidRefs is
a list of the pids and unique references of arrived messages sent to the barrier
(thus it has Arrivedelements)

Barrier process

7

% event loop of barrier for ‘Expected’ processes

% Arrived: number of processes arrived so far

% PidRefs: list of {Pid, Ref} of processes arrived so far

barrier(Arrived, Expected, PidRefs) when Arrived =:= Expected -> % all processes arrived

% notify all waiting processes:

[To ! {continue, Ref} || {To, Ref} <- PidRefs],

% reset barrier:

barrier(0, Expected, []);

barrier(Arrived, Expected, PidRefs) ->

receive % still waiting for some processes

{arrived, From, Ref} ->

% one more arrived: add {From, Ref} to PidRefs list:

barrier(Arrived+1, Expected, [{From, Ref}|PidRefs])

end.

Arrived is redundant because it is equal to length(PidRefs); we keep it for clarity

The server function barrier

8

List comprehension: Go through the list of all pairs of

PidRefs, extract each component of the pair into To (process

PId) and Ref (instance of the process arriving to barrier) and

send a message to that particular instance with the message
continue

The function wait exchanges messages with the Barrier process running

barrier; it is used so that synchronizing processes do not need to know about

the format of exchanged messages

% block at ‘Barrier’ until all processes have reached it

wait(Barrier) ->

Ref = make_ref(),

% notify barrier of arrival

Barrier ! {arrived, self(), Ref},

% wait for signal to continue

receive {continue, Ref} -> through end.

The function wait

pid of process executing wait

dummy value

9

Initializing a barrier consists of spawning a process running barrier

% initialize barrier for ‘Expected’ processes

init(Expected) ->

spawn(fun () -> barrier(0, Expected, []) end).

The caller gets the barrier’s pid, which should be distributed to all processes that

want to use the barrier

Barrier initialization

initially, no processes have arrived yet

10

Resource allocator

11

An allocator grants users exclusive access to a number of resources:

• users asynchronously request resources and release them back

• the allocator ensures resources are given exclusively to one user at a time, and
keeps tracks of how many resources are available

-module(allocator).

% register ‘allocator’ with list of Resources

init(Resources) -> todo.

% get ‘N’ resources from ‘allocator’

request(N) -> todo.

% release ‘Resources’ to ‘allocator’

release(Resources) -> todo.

Resource allocator problem: implement allocator such that:

• an arbitrary number of users can access the allocator

• users are granted exclusive access to resources

Resource allocator: the problem – recap

12

userk

user() ->

% how many resources are needed?

N = howMany(),

% get resources from allocator

Resources = allocator:request(N),

% do something with resources

use(Resources),

% release resources

allocator:release(Resources),

user().

Users
Users continuously and asynchronously access the allocator, which must guarantee

proper synchronization

13

The allocator process keeps track of the list of available resources:

• when a process requests some resources that are available, the allocator sends a

granted message to the process, and removes those just granted from the list of

available resources

• when a process releases some resources, the allocator sends a released message

to the process, and adds those just released to the list of available resources

• requests that exceed the availability implicitly queue in the allocator’s mailbox;

they will be served as soon as enough resources are available

We implement the allocator’s event loop as a server function:

allocator(Resources)

where Resources is the list of available resources

Allocator process

14

allocator(Resources) ->

% count how many resources are available

Available = length(Resources),

receive

% serve requests if enough resources are available

{request, From, Ref, N} when N =< Available ->

% Granted ++ Remaining =:= Resources

% length(Granted) =:= N

{Granted, Remaining} = lists:split(N, Resources),

% send resources to requesting process

From ! {granted, Ref, Granted},

% continue with Remaining resources

allocator(Remaining);

The server function allocator: handling requests

does not match if N > Available

15

[Continue in next slide…]

allocator(Resources) ->

% count how many resources are available

Available = length(Resources),

receive

% serve requests: previous slide...

% serve releases

{release, From, Ref, Released} ->

% notify releasing process

From ! {released, Ref},

% continue with previous and released resources

allocator(Resources ++ Released)

end.

The server function allocator: handling releases

16

The functions request and release exchange messages with the process registered

as allocator; they are used so that synchronizing processes do not need to know

about the format of exchanged messages

% get ‘N’ resources from ‘allocator’; block if not available

request(N) ->

Ref = make_ref(),

allocator ! {request, self(), Ref, N},

receive {granted, Ref, Granted} -> Granted end.

% release ‘Resources’ to ‘allocator’

release(Resources) ->

Ref = make_ref(),

allocator ! {release, self(), Ref, Resources},

receive {released, Ref} -> released end.

The functions requestand release

17

Producer-consumer

18

-module(buffer).

% initialize buffer with size ‘Bound’

init_buffer(Bound) -> todo.

% put ‘Item’ in ‘Buffer’; block if full

put(Buffer, Item) -> todo.

% get item from ‘Buffer’; block if empty

get(Buffer) -> todo.

Producer-consumer problem: implement buffer such that:

• producers and consumer access the buffer atomically

• consumers block when the buffer is empty

• producers block when the buffer is full (bounded buffer variant)

Producer-consumer: the problem – recap

19

Producers and consumers continuously and asynchronously access the buffer, which

must guarantee proper synchronization

Note that atomic access is not an issue with processes: a single sequential process

will actively modify the content of the buffer in response to messages sent by other

processes

Producers and consumers

producern

producer(Buffer) ->

% create a new item

Item = produce(),

buffer:put(Buffer, Item),

producer(Buffer).

consumerm

consumer(Buffer) ->

Item = buffer:get(Buffer),

% do something with ‘item’

consume(Item),

consumer(Buffer).

20

The buffer process keeps track of the items stored in the buffer:

• when a process asks to get one item and the buffer is not empty, the buffer sends
an item message to the process, and removes the item just taken from the buffer list

• when a process asks to put one item and the buffer is not full, the buffer sends a
done message to the process, and adds the item just sent to the buffer list

• as in the allocator example, requests that cannot be satisfied (get with empty buffer,
and put with full buffer) implicitly queue in the allocator’s mailbox; they will be served
as soon as it is possible

We implement the buffer’s event loop as a server function:

buffer(Content, Count, Bound)

where Content is the list of Count available resources and Bound is the buffer’s size

Buffer process: bounded buffer

21

buffer(Content, Count, Bound) ->

receive

% serve gets when buffer not empty

{get, From, Ref} when Count > 0 ->

[First|Rest] = Content, % match first item

From ! {item, Ref, First}, % send it out

buffer(Rest, Count-1, Bound); % remove it from buffer

% serve puts when buffer not full

{put, From, Ref, Item} when Count < Bound ->

From ! {done, Ref}, % send ack

buffer(Content ++ [Item], Count+1, Bound) % add item to end

end.

The server function buffer: handling requests

Starvation not possible: when buffer is neither full nor empty, requests are served in the order they arrive

If buffer fills up, put is disabled; after finitely many gets are served, buffer no longer full, which disables

get, thus allowing put to be served

Similarly, put activates getwhen the buffer is empty

22

Contentmanaged as FIFO queue

In an unbounded buffer, the condition Count < Bound alwaysholds:

% serve puts

{put, From, Ref, Item} when Count < Bound ->

% ...

Instead of removing the condition (as well as all the occurrences of Bound), we can

take advantage of Erlang’s order between numbers and atoms (every number is less

than any atom): setting Bound to infinity ensures that Count < Bound will always

evaluate to true

This way, we can use the very same implementation both in the bounded and in the

unbounded case

Buffer process: unbounded buffer

23

The functions get and put exchange messages with the process with pid Buffer;

they are used so that synchronizing processes do not need to know about the format

of exchanged messages

% get item from ‘Buffer’; block if empty

get(Buffer) ->

Ref = make_ref(),

Buffer ! {get, self(), Ref},

receive {item, Ref, Item} -> Item end.

% put ‘Item’ in ‘Buffer’; block if full

put(Buffer, Item) ->

Ref = make_ref(),

Buffer ! {put, self(), Ref, Item},

receive {done, Ref} -> done end.

The functions getand put

24

Readers-writers

25

-module(board).

init(Name) -> todo. % register board with ‘Name’

begin_read(Board) -> todo. % get read access to ‘Board’

end_read(Board) -> todo. % release read access to ‘Board’

begin_write(Board) -> todo. % get write access to ‘Board’

end_write(Board) -> todo. % release write access to ‘Board’

Readers-writers problem: implement board such that:
• multiple reader can operate concurrently

• each writer has exclusive access

Invariant: #WRITERS = 0 ∨ (#WRITERS = 1 ∧ #READERS = 0)

Other properties that a good solution should have:

• support an arbitrary number of readers and writers

• no starvation of readers or writers

Readers-writers: the problem – recap

26

Readers and writers continuously and asynchronously try to access the board, which
must guarantee proper synchronization

Readers and writers

readern

reader(Board) ->

board:begin_read(Board),

% read messages

board:end_read(Board),

reader(Board).

writerm

writer(Board) ->

board:begin_write(Board),

% write messages

board:end_write(Board),

writer(Board).

27

A first solution to the readers-writers problem can extend the idea behind the allocator: serve

requests when possible and let other requests queue in the mailbox

The board process keeps track of number of readers and writers active on the board:

• when a new request to begin reading arrives and no writer is active, the board sends an OK

to read message to the requester, and increases the count of readers;

• when a new request to begin writing arrives and no readers or writers are active, the board

sends an OK to write message to the requester, and increases the count of writers;

• conversely, when notifications to end read or end write arrive, the board decreases the count

of readers or writers;

• requests that cannot be served implicitly queue in the board’s mailbox; they will be served

as soon as the board is freed

Board process – first version

28

% ‘Readers’ active readers and ‘Writers’ active writers

board_RoW(Readers, Writers) ->

receive

{begin_read, From, Ref} when Writers =:= 0 ->

From ! {ok_to_read, Ref},

board_RoW(Readers+1, Writers);

{begin_write, From, Ref} when (Writers =:= 0) and (Readers =:= 0) ->

From ! {ok_to_write, Ref},

board_RoW(Readers, Writers+1);

{end_read, From, Ref} -> From ! {ok, Ref},

board_RoW(Readers-1, Writers);

{end_write, From, Ref} -> From ! {ok, Ref},

board_RoW(Readers, Writers-1)

end.

The server function board_RoW – first version

29

In board_RoW, the “waiting conditions” follow directly from the invariant; thus, the solution

is correct in that it ensures mutual exclusion according to the readers-writers invariant

However, it gives priority to readers over writers:

• new reading requests get served without waiting as long as a reader is active

• writing requests waiting in the mailbox have to wait until the last reader sends an

end_read message

• as long as reading requests keep arriving and queuing in the mailbox, the waiting

writing requests will never execute

Exchanging the order of clauses in the receive does not solve the problem (nor does it

give priority to writers over readers): readers can still starve writers because the

condition for writing is stronger than the condition for reading, and writers cannot

maintain their condition without the cooperation of readers

Readers-writers: the first version prioritizes readers

30

We could achieve fairness by replicating the pattern behind the solution with monitors

• the board keeps track of the lists of pending read and write requests

• read requests are served as long as there are no active writers and no pending write

requests

• notifications to end_write let in one pending read request, or one waiting write request

if there are no reading requests

This approach works, but it is quite cumbersome to implement with message passing

Main issue: it requires a duplication of the information that is already implicit in the

mailbox queue, which complicates ensuring that messages are processed exactly once

Readers-writers: towards a fair solution

31

We implement a fair solution where the board can be in one of two macro states:

empty: there are neither active readers nor active writers

readers: there are some active readers and no active writers

When the board is in macro state empty:

• read requests are served immediately, then the board switches to macro state readers

• write requests are served immediately and synchronously: the board waits until writing ends,

then the board is empty again

When the board is in macro state readers:

• read requests are served immediately, and the macro state remains readers

• write requests are served as soon as possible: the board waits until all reading ends, then

the writing request is served synchronously, and then the board is empty again

Readers-writers: fair solution

32

This state/transition diagram formalizes the solution illustrated informally above

The partitioning of states in the diagram according to their color corresponds to the macro

states empty and readers

Readers-writers: fair solution (cont’d)

R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

R := 1

begin_write end_write

end_write
R = 0

begin_read,

end_read,

R := R − 1

33

By inspecting the diagram: it guarantees fairness provided outgoing transitions from the same
state have the same priority (they are served in arrival order)

The solution in Erlang implements the behavior of this diagram, using two server functions
empty_board and readers_board, which call each other

Readers-writers: fair solution
(cont’d)

34

R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

R := 1

begin_write end_write

end_write
R = 0

begin_read,

end_read,

R := R − 1

% board with no readers and no writers

empty_board() ->

receive

% serve read request

{begin_read, From, Ref} ->

From ! {ok_to_read, Ref}, % notify reader

readers_board(1); % board has one reader

% serve write request synchronously

{begin_write, From, Ref} ->

From ! {ok_to_write, Ref}, % notify writer

Receive % wait for writer to finish

{end_write, _From, _Ref} ->

empty_board() % board is empty again

end

end.

The server function empty_board

35

R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

begin_read,

R :=1

begin_write end_write

end_write

end_read,

R := R − 1

R = 0

% board with no readers (and no writers)

readers_board(0) -> empty_board();

% board with ‘Readers’ active readers

% (and no writers)

readers_board(Readers) ->

receive

% serve write request

{begin_write, From, Ref} ->

% wait until all ‘Readers’ have finished

[receive {end_read, _From, _Ref} -> end_read end || _ <- lists:seq(1, Readers)],

From ! {ok_to_write, Ref}, % notify writer

receive % wait for writer to finish

{end_write, _From, _Ref} -> empty_board()

end; % board is empty again

The server function readers_board: serving write requests

36

R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

begin_read,

R :=1

begin_write end_write

end_write

end_read,

R := R − 1

R = 0

Take all active readers and wait

till all finiish and send end_read

to all (one by one)

[Continue in next slide…]

Now the order of clauses in the receive does not matter: requests are processed in the
mailbox order because none of the three clauses (begin_read, end_read, and begin_write) has
a condition stronger than the others

readers_board(Readers) ->

receive

% serve write requests: previous slide...

% serve read request

{begin_read, From, Ref} ->

From ! {ok_to_read, Ref}, % notify reader

readers_board(Readers+1); % board has one more reader

% serve end read

{end_read, _From, _Ref} ->

readers_board(Readers-1) % board has one less reader

end.

The server function readers_board: serving read requests

37

Now the order of clauses in the receive does not matter: requests are processed in the
mailbox order because none of the three clauses (begin_read, end_read, and begin_write) has
a condition stronger than the others

readers_board(Readers) ->

receive

% serve write requests: previous slide...

% serve read request

{begin_read, From, Ref} ->

From ! {ok_to_read, Ref}, % notify reader

readers_board(Readers+1); % board has one more reader

% serve end read

{end_read, _From, _Ref} ->

readers_board(Readers-1) % board has one less reader

end.

The server function readers_board: serving read requests

38

R = 0

empty

writing

readers(R)

readers(R)writing

begin_read,

R := R + 1

end_read,

R := R − 1

begin_write

begin_read,

R :=1

begin_write end_write

end_write

end_read,

R := R − 1

R = 0

The functions begin_read, end_read, begin_write, and end_write exchange messages

with the board server process with pid Board; they are used so synchronizing

processes don’t need to know about the format of exchanged messages

For example:

% get read access to ‘Board’

begin_read(Board) ->

Ref = make_ref(),

Board ! {begin_read, self(), Ref},

receive

{ok_to_read, Ref} -> ok_to_read

end.

The behavior of the board process changes over time, but the pid Board stays the same

The functions begin_read, end_read, begin_write, and end_write

40

Initializing a board consists of spawning a process running empty_board.

% initialize empty board and register with ‘Name’

init(Name) ->

register(Name, spawn(fun empty_board/0)).

After initialization, Name can be used to access theboard

Board initialization

41

Dining philosophers

42

-module(philosophers).

% set up table of ‘N’ philosophers

init(N) -> todo.

% philosopher picks up ‘Fork’

get_fork(Fork) -> todo.

% philosopher releases ‘Fork’

put_fork(Fork) -> todo.

Dining philosophers: the problem – recap

Dining philosophers problem: implement philosophers such that:

• forks are held exclusively by one philosopher at a time

• each philosopher only accesses adjacent forks

• no philosopher starves

43

We could replicate solutions based on locking; e.g. setting up a server for each pair of forks,

which grants access to both forks atomically to the first philosopher that sends a request

Instead, let’s explore an approach that is more congenial to message passing

A waiter process supervises access to the table

Each philosopher asks the waiter for permission to sit before picking up both forks and notifies

the waiter after putting down both forks

As long as the waiter allows strictly fewer philosophers than the total number of forks to sit

around the table at the same time, deadlock and starvation are avoided

The waiter’s interface consists of two functions:

% ask ‘Waiter’ to be seated; may wait

sit(Waiter) -> todo.

% ask ‘Waiter’ to leave

leave(Waiter) -> todo.

Philosophers with waiter

44

Philosophers continuously alternate between thinking and eating, while coordinating

with the waiter

Philosophers

philosopherk

% Forks: fork#{left, right} of fork pids

% Waiter: waiter process

philosopher(Forks, Waiter) -> think(),

sit(Waiter), % ask to be seated

get_fork(Forks#forks.left), % pick up left fork

get_fork(Forks#forks.right), % pick up right fork

eat(),

put_fork(Forks#forks.left), % put down left fork

put_fork(Forks#forks.right), % put down right fork

leave(Waiter), % notify leaving

philosopher(Forks, Waiter).

45

The waiter process keeps track of how many philosophers are eating at the table:

• when a philosopher asks to be seated and table is not full, waiter sends an

ok_to_sit message to the philosopher and increases the count of eating

philosophers

• when a philosopher notifies leaving, waiter sends an ok_to_leave message to the

philosopher and decreases the count of eating philosophers

• requests to sit that arrive when the table is full queue in the waiter’s mailbox; they

will be served as soon as a seat frees up

We implement the waiter’s event loop as a server function:

waiter(Eating,Seats)

where Eating philosophers are sitting and eating, out of a total of Seats available

seats (Seats is the number of seats that can be occupied at the same time)

Waiter process

46

waiter(Eating, Seats) ->

receive

% serve as long as seats are available

{sit, From, Ref} when Eating < Seats ->

io:format("~p eating (~p at table)~n", [From, Eating+1]),

From ! {ok_to_sit, Ref},

waiter(Eating+1, Seats); % one more eating

% can leave at any time

{leave, From, Ref} ->

io:format("~p leaving (~p at table)~n", [From, Eating-1]),

From ! {ok_to_leave, Ref},

waiter(Eating-1, Seats) % one less eating

end.

(Printing the table’s state at every change is for debugging purposes)

The server function waiter

47

Two handler functions: sit and leave (they hide the format of messages exchanged between waiter

and philosophers)

% ask ‘Waiter’ to be seated; may wait

sit(Waiter) ->

Ref = make_ref(),

Waiter ! {sit, self(), Ref},

receive {ok_to_sit, Ref} -> ok end.

% ask ‘Waiter’ to leave

leave(Waiter) ->

Ref = make_ref(),

Waiter ! {leave, self(), Ref},

receive {ok_to_leave, Ref} -> ok end.

The functions sitand leave

48

Each fork has a fork process which keeps track of whether the fork is free (on the table)

or held by a philosopher

The server function for a fork can be in two states (whether the fork is held or not)

For simplicity, put requests don’t get an acknowledgment; they take effect immediately

The fork processes and functions

% a fork not held by anyone

fork() ->

receive

{get, From, Ref} ->
From ! {ack, Ref},
fork(From) % fork held

end.

% a fork held by Owner

fork(Owner) ->

receive

{put, Owner, _Ref} ->
fork() % fork not held

end.

49

The structure of get_fork and put_fork are similar to things we’ve seen:

% pick up ‘Fork’; block until available

get_fork(Fork) ->
Ref = make_ref(),
Fork ! {get, self(), Ref},
receive {ack, Ref} -> ack end.

% put down ‘Fork’

put_fork(Fork) ->
Ref = make_ref(),
Fork ! {put, self(), Ref}.

The functions get_fork andput_fork

50

Initializing a table consists of spawning the processes running waiter, fork and
philosopher, as well as connecting each philosopher to their pair of forks

% set up table of ‘N’ philosophers

init(N) ->

% spawn waiter process

Waiter = spawn(fun () -> waiter(0, N-1) end),

Ids = lists:seq(1,N), % [1, 2, ..., N]

% spawn fork processes

Forks = [spawn(fun fork/0) || _ <- Ids],

% spawn philosopher processes

[spawn(fun () ->

Left = lists:nth(I, Forks),

Right = lists:nth(1+(I rem N), Forks), % 1-based indexes

philosopher(#forks{left=Left, right=Right}, Waiter)

end) || I <- Ids].

Table initialization

51

at most N-1 eating philosophers at once

Different from how we numbered philosophers and

forks in previous lecture: we start from 1 instead of

0, so the forks are also numbered 1..N

First get each one of the Ids from the list Ids, and

spawn a corresponding fork for that ID

These slides’ license

© 2016–2019 Carlo A. Furia, Sandro Stucki

Except where otherwise noted, this work is licensed under the

Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit

http://creativecommons.org/licenses/by-sa/4.0/.

52

http://creativecommons.org/licenses/by-sa/4.0/

	Slide 1
	Slide 2: Today’s menu
	Slide 3: A gallery of synchronization problems
	Slide 4: Barriers
	Slide 5: Reusable barriers – recap
	Slide 6: Processes at a reusable barrier
	Slide 7: Barrier process
	Slide 8: The server function barrier
	Slide 9: The function wait
	Slide 10: Barrier initialization
	Slide 11: Resource allocator
	Slide 12: Resource allocator: the problem – recap
	Slide 13: Users
	Slide 14: Allocator process
	Slide 15: The server function allocator: handling requests
	Slide 16: The server function allocator: handling releases
	Slide 17: The functions request and release
	Slide 18: Producer-consumer
	Slide 19: Producer-consumer: the problem – recap
	Slide 20: Producers and consumers
	Slide 21: Buffer process: bounded buffer
	Slide 22: The server function buffer: handling requests
	Slide 23: Buffer process: unbounded buffer
	Slide 24: The functions get and put
	Slide 25: Readers-writers
	Slide 26: Readers-writers: the problem – recap
	Slide 27: Readers and writers
	Slide 28: Board process – first version
	Slide 29: The server function board_RoW – first version
	Slide 30: Readers-writers: the first version prioritizes readers
	Slide 31: Readers-writers: towards a fair solution
	Slide 32: Readers-writers: fair solution
	Slide 33: Readers-writers: fair solution (cont’d)
	Slide 34: Readers-writers: fair solution (cont’d)
	Slide 35: The server function empty_board
	Slide 36: The server function readers_board: serving write requests
	Slide 37: The server function readers_board: serving read requests
	Slide 38: The server function readers_board: serving read requests
	Slide 39: The server function readers_board: serving read requests
	Slide 40: The functions begin_read, end_read, begin_write, and end_write
	Slide 41: Board initialization
	Slide 42: Dining philosophers
	Slide 43: Dining philosophers: the problem – recap
	Slide 44: Philosophers with waiter
	Slide 45: Philosophers
	Slide 46: Waiter process
	Slide 47: The server function waiter
	Slide 48: The functions sit and leave
	Slide 49: The fork processes and functions
	Slide 50: The functions get_fork and put_fork
	Slide 51: Table initialization
	Slide 52: These slides’ license

